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Abstract—In this paper we study the propagation of acceleration waves in inextensible elastic
bodies.* While the computations are but an exercise, the results are interesting and quite unlike
the corresponding results for unconstrained bodies. Indeed, a wave travelling in the direction
of inextensibility must necessarily be transverse, and, when the reaction stress is compressive
and sufficiently large, the corresponding speed of propagation becomes non-real, so that even
transverse waves fail to exist.

We also study (infinitesimal) progressive waves, and we find the corresponding propagation
condition to be the same as that for acceleration waves. Here, however, non-real speeds of
propagation have a definite physical meaning: they imply exponential growth of the wave.
Thus, in particular, when the reaction stress is compressive and sufficiently large, a transverse
progressive wave travelling in the direction of inextensibility grows without bound, We con-
jecture that this indicates the presence of local buckling.t

1. INEXTENSIBLE ELASTIC BODIES
For convenience, we identify the body # with the region of space it occupies in a fixed
reference configuration with density p(X). A motion of 4 is then a mapping x; its value
x(X, t) is the position of the material point X at time 7.
We assume that the body is inextensible in the direction e (in the reference configuration),
where e is a unit vector:

le] = 1. 1.0
Then every motion of # obeys the constraint

|Fe| =1, (L.2)
where

F=Vx (1.3)

* The constraint of inextensibility was apparently first considered by Adkins and Rivlin {1].

1 Truesdell and Noll [2}, p. 275, in a discussion of non-real speeds of propagation for infinitesimal pro-
gressive waves, remark that:** Perhaps in this way physical instabilities such as buckling ultimately may come
to be explained. It may be the occurrence of certain waves, presumably transverse, that disturbs a sufficiently
severe homogeneous compression of a bar so much as to carry the body over into a state of small oscillation
about a different configuration subject to the same resultant terminal loads.” See also Truesdell [3], §4.
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is the deformation gradient. Further, for an elastic body the Piola—Kirchhoff stress S is
determined by F only to within an arbitrary pure tension* ¢

S = a(Fe @ e) + S(F) (1.4)

with S a smooth function. Of course, S also depends explicitly on the material point X, but,
for convenience, we suppress this dependence.

2. ACCELERATION WAVES

Assume now that an acceleration wave X exists in the body. Across ¥ the motion x, the
velocity %, the deformation gradient F, and the reaction stress ¢ are continuous, but %, F,
VF, ¢, and Vo suffer jump discontinuities. We call

a =[] @2.1)

the amplitude; here we have used the standard notation [f] for the jump in a function f
across X.T Then, as is well known, we have the kinematical condition of compatibility

[ﬂ=—%a®m (2.2)

as well as the following expression for balance of momentum across the wave§
[Sln = —pUa. (2.3)

Here U is the speed of propagation and n the direction of propagation, both relative to the
reference configuration.

If we differentiate (1.2) (in the form Fe - Fe = 1) with respect to time and evaluate the
resulting relation across X, we arrive at the result

(a-f)(n-e)=0, (24)

where
f=Fe (2.5)
is the direction of inextensibility relative to the current configuration. By (2.4) and (2.5),
n=e=Fn-a=0. (2.6)

Since Fn is the direction of propagation of the wave relative to the current configuration,
(2.6) asserts that a wave travelling in the direction of inextensibility must necessarily be

transverse.
Next, (2.2) and (2.5) imply that

m=—%mwm 2.7

* See, e.g. Truesdell and Noll [2], p. 72; Gurtin and Podio Guidugli {4]. Note that the Piola~Kirchhoff
reaction stress o(Fe @ e) is equivalent to the Cauchy reaction stress oJ~ !(Fe ® Fe), where J = det F. Thus,
more precisely, o/~ ! rather than o is the pure tension due to the reaction.

T See, e.g. Truesdell and Toupin [5], §173.

t See, e.g. [5), Eq. (190.2); our U and n are designated by Uy and N, respectively, in [5].

§ See, e.g. Chen [6], p. 314; Gurtin [7], p. 254.



On wave propagation in inextensible elastic bodies 277

so that the jump in f is parallel to the amplitude. If we take the time-derivative of (1.4), we
conclude, with the aid of (2.2), (2.3), (2.5), and (2.7) that
o(n-e)’a — Ulg)(n - )f + Q(n)a = pU?a. (2.8)

Here Q(n) is the acoustic tensor; that is, Q(n) is the unique tensor with the following
property:
Qv = S¢(F)[v @ n]n (2.9)
for every vector v, where Sy is the derivative of 8§ with respect to F.
In view of (2.4), either n is perpendicular to e, or a is perpendicular to f. We now consider
these two cases separately.

Case 1
n-e=0. (2.10)
Here, trivially, (2.8) implies that
Q(n)a = pUZa. (2.11)
Thus the classical Fresnel-Hadamard propagation condition holds when the wave is pro-
pagating in a direction perpendicular to the direction of inextensibility.
Case 2
fra=0. 2.12)
Since
If] =1, (2.13)

as is clear from (1.2) and (2.5), if we take the inner product of (2.8) with f and use (2.12),
we arrive at the result

Uleln-e) =1 Qn)a. (2.19)
This result, when combined with (2.8), leads to the propagation condition
PQ(n)a = [pU? — o(n - e)*]a. (2.15)
Here
P=1-f®f (2.16)

is the projection onto the plane perpendicular to f; its presence in (2.15) insures that solutions
a of (2.15) are consistent with (2.12).
When the reaction stress ¢ is zero, (2.15) reduces to

PQ(n)a, = pU,’a,, @17

and it is clear that there exists a one-to-one correspondence between solutions (U,, a,) of
(2.17) and solutions (U, a) of (2.15); in fact, this correspondence is given by

a=ao,

2.1
pU? = pUy? + o(n - €)% (2.18)

If we assume that n- e # 0, then a tensile reaction stress raises the speed of propagation, a
compressive reaction stress lowers the speed of propagation. Further, given any n # e, when
the reaction stress o is compressive and sufficiently large, it is impossible to propagate a wave
in the direction of n, for in this instance the corresponding speeds U will all be imaginary.
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The existence of imaginary speeds leads one to conjecture the presence of a local instability;
the fact that this phenomenon occurs at high compressive stresses makes this conjecture
intuitively plausible. With this in mind, we study, in the next section, infinitesimal pro-
gressive waves for which imaginary propagation speeds actually signify an instability.

3. INFINITESIMAL PROGRESSIVE WAVES
In order to investigate the stability of the material when the compressive stress is com-

pressive and large, we now turn to a study of infinitesimal progressive waves. Such waves
are solutions of the linearized field equations obtained under the approximative assumption
that

e=|Vu| +|0o — a4 3.1
is small. Here

X, D=x(X,1)-X (3.2)
is the displacement, while o, # 0 is a prescribed constant reaction stress. If in (1.2) and (1.4)
terms of order &* are neglected, then these equations reduce to*

e He=0,

S=(c—~o0y)e®@e+o,He®e + C[H], (3-3)
where
H=Vu (3.4)
is the displacement gradient, and
C =51 (3.5)

is the elasticity tensor, and where now S denotes the actual stress minus the constant residual
stress 6o e @ e. To these equations we adjoin the equation of motion

Div S = pii. (3.6)

We now assume that both the body and the reference configuration are homogeneous,
so that p and C are independent of X. An infinitesimal progressive wave is a solution of (3.3)
and (3.6) of the form¥

uX,t)=a exp{% (p-n— Ut)>,
| (3.7)
oX, 1)~ 0, =21 exp[% (p-n— Ut)},
P=X—-X,;

U is the speed, n is the direction, w is the frequency, and a is the amplitude. Then, letting
g = exp{’—g; (p-n— Uz)}, (3.8)

* These equations are derived by Gurtin and Podio Guidugli [8). Material frame-indifference implies that
C[Vu] = C[#(Vu +VuT)], but this fact is not needed in what follows.
+ Here we allow complex solutions; these are to be interpreted in the usual manner.
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we see that
: 2
iw . W
H=—a®np, H=—a®n},
U b U 3.9
il = —w?ap, ¢ = —iwuf,
and (3.3),, (3.9), imply that
(a-e)n-e)=0. (3.10)

Thus, as before, a wave traveling in the direction of inextensibility must necessarily be

transverse.
Next, we conclude from (3.3);, (3.7),, (3.8), and (3.9), that S has the form

S=Ap 3.11)

with A a constant tensor (which in general will be complex). A simple calculation, based on
(3.11), tells us that Sm = — U Div S, and therefore (3.3),, (3.6), and (3.9) imply that

- iU(lZo. e e + oo(n - €)?a + Q(n)a = pU?a, (3.12)

where Q(n) is the acoustic tensor (2.9) corresponding to the deformation gradient F = 1.
By (3.10), we must consider two cases:n-e=0anda-e=0.

Case 1
n-e=40. (3.13)
Here trivially,
Q(n)a = pU?a. (3.19)
Case 2
a'e=0, (3.15)
If we take the inner product of (3.12) with e, we find that
@a—;f—)ﬁ =e - Q(n)a, (3.16)
and hence (3.12) implies that
PQm)a = [pU? — 5,(n - e)*]a, 3.17
where now
P=1—-e®e (3.18)

is the projection onto the plane perpendicular to e.

When comparing these results with those of the previous section one should bear in mind
that in section 2 the material ahead of the wave was allowed to have an arbitrary deforma-
tion gradient F, while the progressive waves studied here are propagating through material
at rest in the reference configuration. If in our results on acceleration waves we assume that
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F =1 at the wave, then the results of the two sections are comparable, and, in fact, (2.4),
(2.11), (2.15), and (2.16) are identical to (3.10), (3.14), (3.17), and (3.18), respectively.

As in the case of an acceleration wave, when the underlying reaction stress o, is zero,
(3.17) reduces to

PQ(n)a, = pU,2a,, (3.19)
and, as before, if (a,, U,) is a solution of (3.19), then
a=a,
pU? = pUy? + 64(n - €)? (3.20)

is a solution of (3.17) for arbitary o,. Thus, when n- e # 0, U will be imaginary when

g, <0, lag| > (3.21)

Therefore, in view of (3.7), when (3.21) is satisfied both u and o tend to infinity exponentially
as t — oo. Further, for

_ pUy°
Oy = o e)z’ (3.22)
we have
U=0. (3.23)

For U =0 the equations (3.7) make no sense. If, however, we replace the term w/U in
(3.7) by 1/4 and repeat the analysis we find that

u=a exp{#} ,

(3.24)

6—0 aexp{ip‘n}
— 6y = il
A

when (3.22) holds. These represent time-independent “buckied mode shapes™ for the
material. In (3.24) the wave-length 1 is arbitrary; thus there exists a buckled mode shape with
every possible wave-length.

4. CONCLUDING REMARKS

We have also derived, using the standard method of analysis, an explicit expression for
the amplitude of a plane acceleration wave propagating through an inextensible elastic body
which is at rest in a homogeneous configuration. This expression is independent of the under-
lying reaction stress ¢ and leads to results which are completely analogous to those for an
unconstrained body.*

The analysis given in this paper could also be applied to elastic bodies subject to the
constraint¥

Fe, - Fe, = 0, 4.1

*Cf. Chen [6], §§6, 7.
1Cf. e.g. Gurtin and Podio Guidugli [4].
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where e, and e, are orthogonal unit vectors. For this type of body the reaction stress is a
pure shear of the form t/2(Fe; ® e, + Fe, ® e,), and the results obtained are completely
analogous to those of sections 2 and 3 for inextensible bodies, except that the instability is
now one of shear rather than compression. Indeed, as before, there are two cases of interest:
case 1, in which n is orthogonal to both e, and e,, and case 2, in which

g = (e; - n)Fe, + (e, - m)Fe, 4.2)

is perpendicular to a. In case 1 the Fresnel-Hadamard condition (2.11) holds, while in
case 2 the propagation condition for both acceleration waves and infinitesimal progressive
waves is

PQ(m)a = [pU? — 7(n - ¢/)(n - ¢,)]a, 4.3)
with
g®g
P=1-2=2, 4.4
lg|? “4)

provided, of course, we set F =1 for progressive waves.
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PesroMme — B 31O pafoTe paccMaTpHBaeTCsl pacpoOCTPaHEHHE BONH YCKOPEHHA B HEpacTi-
JKHMBIX 3JTACTUYHBIX TesaX. XOTs, pacuyeThl 3TH ABIIAIOTCA TOJIBKO YIPAXKHEHHEM, PE3yIbTATHI
HHTEPECHBI ¥ COBEPIIEHHO HE MOXOXH HA COOTBETCTBYIOIIME PE3YJILTATHI 10 HE CTECHEHHBIM
CBA3AMH TeJaM. B caMoOM [nene, BOJIHA ABHTAloOIIAsicsi B HE PACTHKHMOM HAMpPaBJICHHH TIO
HeOOXOAMMOCTH JOJKHA ObITh IONEPEYHON, W, €CIIH HANPHKEHHE peakUuMM CKHMAIoLiee H
[OCTAaTOYHO CHIIBHOE, COOTBETCTBYIOUIAS CKOPOCTh PACHPOCTPAHEHHS CTAHOBHTCH HEPealib-
HOH, TaK YTO JaXe HMONepeyYHble BOJHLI GONbIe HE CYLIECTBYIOT.

Taxxke paccMaTpuBanch (GECKOHEYHO Manble) IMPOTPECCHBHBIE BOJHBLI, M HALIH, YTO
YCTIOBHSI COOTBETCTBYIOT YCJIOBHSIM BOJIH YCKOpEHHMs. B 3TOM ciyyde, OHAKO, HEpPEANIbHBIE
CKOPOCTH PACHPOCTPAHCHHS UMEIOT OMpele/ieHHOEe (U3MYECKOE 3HAYEHHE:. OHHM O3HAYAIOT
HCKTIOMATENIBHBIA pOCcT BoH. OcOGEHHO, KOTaa HATIPSKEHUE PEAKLIUY COKUMAIOLIIEE M CHIILHOE,
TOrAa IomnepeyHas [IPOrpPeCCHBHASA BOJIHA MEPEABHIAIOLIAACA O HEPACTSKMMOMY HalpaBlie-
HHIO HeOrpaHW4eHHO pacrtet. [lpenmonaraercs, YTO MPHUCYTCTBYET MECTHbIH NPOOOJILHBIA
u3ruo.
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